Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
{"Abstract":["Machine-readable tables accompany the book chapter "Chemical Composition of the Sun", authors Maria Bergemann, Katharina Lodders, Herbert Palme, Encyclopedia of Astrophysics 1st Edition (edited by I. Mandel, section editor F.R.N. Schneider) to be published by Elsevier as a Reference Module, 2025"]}more » « lessFree, publicly-accessible full text available January 1, 2026
-
ABSTRACT Recent observational studies have uncovered a small number of very metal-poor (VMP) stars with cold kinematics in the Galactic disc and bulge. However, their origins remain enigmatic. We select a total of 138 Milky Way (MW) analogues from the TNG50 cosmological simulation based on their z = 0 properties: discy morphology, stellar mass, and local environment. In order to make more predictive statements for the MW, we further limit the spatial volume coverage of stellar populations in galaxies to that targeted by the upcoming 4MOST high-resolution survey of the Galactic disc and bulge. We find that across all galaxies, ∼20 per cent of VMP ([Fe/H] < −2) stars belong to the disc, with some analogues reaching 30 per cent. About 50 ± 10 per cent of the VMP disc stars are, on average, older than 12.5 Gyr and ∼70 ± 10 per cent come from accreted satellites. A large fraction of the VMP stars belong to the halo (∼70) and have a median age of 12 Gyr. Our results with the TNG50 cosmological simulation confirm earlier findings with simulations of fewer individual galaxies, and suggest that the stellar disc of the MW is very likely to host significant amounts of very- and extremely-metal-poor stars that, although mostly of ex situ origin, can also form in situ, reinforcing the idea of the existence of a primordial Galactic disc.more » « less
-
Physically realistic models of stellar spectra are needed in a variety of astronomical studies, from the analysis of fundamental stellar parameters, to studies of exoplanets and stellar populations in galaxies. Here we present a new version of the widely used radiative transfer code Turbospectrum, which we update so that it is able to perform spectrum synthesis for lines of multiple chemical elements in non-local thermodynamic equilibrium (NLTE). We use the code in the analysis of metallicites and abundances of the Gaia FGK benchmark stars, using 1D MARCS atmospheric models and the averages of 3D radiation-hydrodynamics simulations of stellar surface convection. We show that the new more physically realistic models offer a better description of the observed data, and we make the program and the associated microphysics data publicly available, including grids of NLTE departure coefficients for H, O, Na, Mg, Si, Ca, Ti, Mn, Fe, Co, Ni, Sr, and Ba.more » « less
-
Abstract The ultrafaint dwarf galaxy Reticulum II was enriched by a single rare and prolific r -process event. The r -process content of Reticulum II thus provides a unique opportunity to study metal mixing in a relic first galaxy. Using multi-object high-resolution spectroscopy with VLT/GIRAFFE and Magellan/M2FS, we identify 32 clear spectroscopic member stars and measure abundances of Mg, Ca, Fe, and Ba where possible. We find 72 − 12 + 10 % of the stars are r -process-enhanced, with a mean [ Ba / H ] = − 1.68 ± 0.07 and unresolved intrinsic dispersion σ [Ba/H] <0.20. The homogeneous r -process abundances imply that Ret II’s metals are well mixed by the time the r -enhanced stars form, which simulations have shown requires at least 100 Myr of metal mixing in between bursts of star formation to homogenize. This is the first direct evidence of bursty star formation in an ultrafaint dwarf galaxy. The homogeneous dilution prefers a prompt and high-yield r -process site, such as collapsar disk winds or prompt neutron star mergers. We also find evidence from [Ba/H] and [Mg/Ca] that the r -enhanced stars in Ret II formed in the absence of substantial pristine gas accretion, perhaps indicating that ≈70% of Ret II stars formed after reionization.more » « less
-
Abstract Stars that formed with an initial mass of over 50M⊙are very rare today, but they are thought to be more common in the early Universe. The fates of those early, metal-poor, massive stars are highly uncertain. Most are expected to directly collapse to black holes, while some may explode as a result of rotationally powered engines or the pair-creation instability. We present the chemical abundances of J0931+0038, a nearby low-mass star identified in early follow-up of the SDSS-V Milky Way Mapper, which preserves the signature of unusual nucleosynthesis from a massive star in the early Universe. J0931+0038 has a relatively high metallicity ([Fe/H] = −1.76 ± 0.13) but an extreme odd–even abundance pattern, with some of the lowest known abundance ratios of [N/Fe], [Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of its metals originated in a single extremely metal-poor nucleosynthetic source. An extensive search through nucleosynthesis predictions finds a clear preference for progenitors with initial mass >50M⊙, making J0931+0038 one of the first observational constraints on nucleosynthesis in this mass range. However, the full abundance pattern is not matched by any models in the literature. J0931+0038 thus presents a challenge for the next generation of nucleosynthesis models and motivates the study of high-mass progenitor stars impacted by convection, rotation, jets, and/or binary companions. Though rare, more examples of unusual early nucleosynthesis in metal-poor stars should be found in upcoming large spectroscopic surveys.more » « less
-
Abstract PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R$$_\textrm{Earth}$$ ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases.more » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government

Full Text Available